Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

FaceBook oldalunk

Látogatók

Mai265
Heti1973
Havi16115
Összes681592

IP: 54.92.150.98 Unknown - Unknown 2018. június 20. szerda, 09:30

Ki van itt?

Guests : 37 guests online Members : No members online

Honlapok

SULINET Matematika

Oktatási Hivatal

Versenyvizsga portál
banvv

Matematika Portálok

Berzsenyi Dániel Gimnázium

berzsenyi

Óbudai Árpád Gimnázium
arpad

 

Szent István Gimnázium

sztistvan

A gondolkodás öröme
gondolkodasorome

Keresés az Kavics Kupa (KavicsK) feladatbankjában

Találatok száma laponként:
Keresési szűrő: kk_2009
 
Találatok száma: 20 ( listázott találatok: 1 ... 20 )

1. találat: Kavics Kupa 2009 1. feladat ( kk_2009_01f )
Témakör: *Számelmélet

„Íme, Medveczky Medve Úr, amint bukdácsol lefelé a lépcsőn, kopogtatva a feje búbjával, kipp- kopp, minden lépcsőfokon egy koppanás.” A 111 lépcsőfok mindegyikén egy szám, az i. lépcsőn éppen (2009i+16):111 törtrésze. Mennyi a lépcsőkre írt számok összege, azaz

$ \sum_1^{111}\left\{\dfrac{2009\cdot i+6}{111}\right\} $

 



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
2. találat: Kavics Kupa 2009 2. feladat ( kk_2009_02f )
Témakör: *Kombinatorika

Nyuszi, akinek mindig Rengeteg Fontos Dolga volt, éppen egy-egy csillagot rajzolt egy 4×4-es tábla bizonyos mezőibe úgy, hogy két tetszőleges sor és két tetszőleges oszlop elhagyása után is maradjon még csillag a táblán. Legalább hány mezőbe rajzolt csillagot?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
3. találat: Kavics Kupa 2009 3. feladat ( kk_2009_03f )
Témakör: *Kombinatorika

Zsebibaba és Kanga egy szép háromszöget rajzoltak a patak partján a homokba. Zsebibaba lemérte az egyik magasságát, 9 cm volt. Kanga egy másik magasságnál 29 cm-t mért. A Magasságokat Mérő Medve lemérte a harmadik magasságot és az M cm volt (M egész). Mennyi M lehetséges legkisebb és legnagyobb értékének szorzata?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
4. találat: Kavics Kupa 2009 4. feladat ( kk_2009_04f )
Témakör: *Kombinatorika

Micimackó, azaz Medveczky Medve, vagyis Nyuszi Barátja, az Északi Sark Felfedezője és Füles Farkának Felfedezője barátaival agytornázott. Mackó gondolt egy X négyjegyű pozitív egészre. A Malacka előtt heverő 1234 számban és ugyanígy a Füles előtt levő 3456 számban is bekarikázta mindazon jegyeket, amik X-ben előfordulnak. Mindkét számban két karika volt. Hányféle lehetett az X szám?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
5. találat: Kavics Kupa 2009 5. feladat ( kk_2009_05f )
Témakör: *Aritmetika

Amíg Micimackó a léggömbbe kapaszkodva felhődalt énekelt, a fa tövében Róbert Gida a matek háziján gondolkodott. Volt benne paraméter, egész rész, szignum, ami csak kell, íme: legyen p olyan valós paraméter, amely esetén a $ x^8+px^4+1=0 $ egyenlet négy gyöke számtani sorozatot alkot. Mennyi $ 8[p]^2+4\ sgn\ p $ ?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
6. találat: Kavics Kupa 2009 6. feladat ( kk_2009_06f )
Témakör: *Algebra

Malacka, Füles és Mackó számgondolósat játszottak. Mindhárman gondoltak egy-egy számra és megsúgták Bagolynak. Bagoly a számokról a következőket árulta el: összegük 0, szorzatuk nem 0, köbeik összege ugyanannyi, mint ötödik hatványaik összege. Mennyi négyzeteik összegének 100-szorosa?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
7. találat: Kavics Kupa 2009 7. feladat ( kk_2009_07f )
Témakör: *Geometria

Micimackó és Malacka miközben saját nyomaikat menyétnyomnak nézték, a hóban két hatalmas kört írtak le. Az eredeti történettől eltérően, a két illető külön-külön körzött, a két kör nem metsző és nincs egyik a másikban. Róbert Gida a fa tetejéről figyelte őket és megállapította, hogy a két kör közös külső és belső érintőjén az érintési pontok közti szakaszok hossza 26 és 22. Mekkora a sugarak szorzata?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
8. találat: Kavics Kupa 2009 8. feladat ( kk_2009_08f )
Témakör: *Algebra

BGLY MTMTK KNYVBN TLLTK:
JLLJ (n)k   k SZM N-HZ LGKZLBB TBBSZRST. LDJK MG Z GYNLTRNDSZRT Z GSZ SZMK HLMZN, S HTRZZK MG x–y RTKT:

$ (4x)_5+7y=15;\quad (2y)_5-(3y)_7=74 $

 



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
9. találat: Kavics Kupa 2009 9. feladat ( kk_2009_09f )
Témakör: *Algebra

No, mi baj Füles? Semmi, Róbert Gida. Szóra sem érdemes. Nem fontos. Csak éppen számolgatom a bűvös számokat, amelyek a 10 különböző jegyből álló 99999-cel osztható pozitív egészek. Most már együtt számolgattak. Hány bűvös szám van?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
10. találat: Kavics Kupa 2009 10. feladat ( kk_2009_10f )
Témakör: *Algebra

"Mozgalmas és elfoglalt napja volt Nyuszinak ez a nap. Már reggel úgy ébredt, hogy nagyon fontosnak érezte magát, és mintha egyenesen tőle függne valami. Olyan nap volt, amikor Szervezni kell valamit, vagy Levelet írni Nyuszi s.k. aláírással, vagy megmondani a véleményét valamiről, amiben mindenki élénken helyesel." Rokonai és Üzletfelei már régóta noszogatják, mondja már meg, melyik a legkisebb b>1 alapú számrendszer, amiben van xyxyb alakú pozitív köbszám. Ma ezt végre meghatározhatjuk.



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
11. találat: Kavics Kupa 2009 11. feladat ( kk_2009_11f )
Témakör: *Kombinatorika

Aha, ha hézagos műveltségem nem hagy cserben, akkor ez a bucka Nyuszi lakását jelenti, Nyuszi pedig Jó Társaságot és valami harapnivalót. De mit keres itt a bucka előtt ez a kocka? És hány olyan sík van a térben, amelyik áthalad a kocka élei közül legalább három felezőpontján?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
12. találat: Kavics Kupa 2009 12. feladat ( kk_2009_12f )
Témakör: *Geometria

Mindent szeretnek a Tigrisek – mondta Tigris. Kivéve a mézet, a kukoricát és a bogáncsot, derült ki később. Viszont a geometriát nagyon szeretik! Még a csukamájolajról is képesek megfeledkezni egy ilyen példa kedvéért: az ABC hegyesszögű háromszögben AH, AD és AM rendre az A-ból húzható magasság, szögfelező és súlyvonal. Az AB, AC és MD szakaszok hossza 1100, 800 és 100. Mekkora a DH szakasz?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
13. találat: Kavics Kupa 2009 13. feladat ( kk_2009_13f )
Témakör: *Kombinatorika

Róbert Gida sokat mesélt Tigrisnek a Kastélyról, amelynek pincéjében 7 törpe őrzi a kincset. A kincs 12 ajtó mögött van, mindegyik ajtón 12 különböző lakat. Összesen tehát 144 különböző lakat. Mindegyik törpénél néhány kulcs van úgy, hogy bármely három törpénél megvan az összes zár kulcsa. Legalább hány kulcs van a 7 törpénél összesen?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
14. találat: Kavics Kupa 2009 14. feladat ( kk_2009_14f )
Témakör: *Geometria

Fülest születésnapján Mackó egy egészen különleges, tetraéder alakú léggömbbel szeretné meglepni. Miközben az „Éder, éder, tetraéder” kezdetű versikét fabrikálta magában, azon gondolkozott, hogy amennyiben az ABCD tetraéder belső pontja P, és az ABCP, ABDP, ADCP és BCDP tetraéderek súlypontjai K,L,M,N, akkor hányszorosa a KLMN térfogatának az ABCD térfogata.



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
15. találat: Kavics Kupa 2009 15. feladat ( kk_2009_15f )
Témakör: *Geometria

Egy napon, amikor Róbert Gida és Micimackó és Malacka egyszerre beszéltek mind a hárman, Róbert Gida lenyelte a falatot, amivel tele volt a szája és megkérdezte: Ha az ABC háromszögben α = 2β, γ tompaszög, az a,b,c oldalak egészek, akkor szerintetek mennyi lehet a kerület lehetséges legkisebb értéke?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
16. találat: Kavics Kupa 2009 16. feladat ( kk_2009_16f )
Témakör: *Számelmélet

Füles azt gondolta: "Miért?" –és néha azt gondolta: "Minekutánna"; és néha azt gondolta: "Amennyiben." Vagy: "Minekutánna tehát." És néha nem is tudta, hogy mire gondol. Így hát őszintén megörült, amikor meglátta Micimackót, aki megkérdezte tőle: melyik a legnagyobb N, amelyre az {1,2,...,N} halmaz elemei között ugyanannyi 3-mal osztható van, mint 5-tel vagy 7-tel osztható?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
17. találat: Kavics Kupa 2009 17. feladat ( kk_2009_17f )
Témakör: *Komnbinatorika

Egy napon, mikor Micimackónak semmi dolga nem akadt, eszébe jutott, hogy rendezgetni kéne az almáriumban a csuprokat. 12 csuprot rakott sorba egy polcon. Határozzuk meg az 1,2,...,11,12 számok azon (a1,a2,...,a12) permutációinak a számát, amelyekre igaz, hogy pontosan egy i∈{1,2,...,11} indexre teljesül, hogy aí > aí+1.



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
18. találat: Kavics Kupa 2009 18. feladat ( kk_2009_18f )
Témakör: *Kombinatorika

Malacka szobáját egy színes négyzet díszíti. A négyzet kerületének minden pontját kiszínezték úgy, hogy nincs olyan derékszögű háromszög, melynek minden csúcsa a négyzet határán lenne és csúcsai ugyanolyan színűek. Legalább hány szín kellett a színezéshez?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
19. találat: Kavics Kupa 2009 19. feladat ( kk_2009_19f )
Témakör: *Kombinatorika

Trallala, trallala, pritty pretty prütty, dudorászta Micimackó, miközben egy 10×10-es tábla mezőit színezgette úgy, hogy minden sorban és minden oszlopban legfeljebb 5 különböző színű mező legyen.Legfeljebb hány színt használhatott?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
20. találat: Kavics Kupa 2009 20. feladat ( kk_2009_20f )
Témakör: *Számelmélet

Micimackó az almáriumban rendezkedve az egyik üres mézescsuporban egy kis cédulát fedezett fel, melyen ez állt: Határozzuk meg a legkisebb páratlan pozitív N egészt, amelyre N2 páratlan sok (egynél több) szomszédos pozitív egész négyzetének összege. Mackó elhatározta, addig nem eszik mézet, amíg a feladatot meg nem oldja.



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba

QR kód

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

QR

 

 

 

Bejelentkezés cikkíróknak


Joomla template: szsnjm3-001
(c) Szoldatics József (www.szolda.hu), Eszesen KFt. 2011/2016