Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

FaceBook oldalunk

joomla facebook

Látogatók

Mai625
Heti2360
Havi12173
Összes701946

IP: 54.224.111.99 Unknown - Unknown 2018. július 18. szerda, 16:34

Ki van itt?

Guests : 34 guests online Members : No members online

Honlapok

SULINET Matematika

Oktatási Hivatal

Versenyvizsga portál
banvv

Matematika Portálok

Berzsenyi Dániel Gimnázium

berzsenyi

Óbudai Árpád Gimnázium
arpad

 

Szent István Gimnázium

sztistvan

A gondolkodás öröme
gondolkodasorome

ARANYD 2013/2014 Haladó I. kategória döntő 1. feladat ( AD_20132014_h1kdf1f )
Témakör: *Kombinatorika

Az S8Q-bolygón n különböző ország osztozik (50 < n < 80). Bármely két különböző ország között vagy baráti, vagy ellenséges a kapcsolat (harmadik eset nincs, és a kapcsolat kölcsönös) a következ˝o két szabály mellett:

Ha A, B, C három különböző ország, és

(1) A barátságos B-vel, valamint B barátságos C-vel, akkor A is barátságos C-vel. (barátom barátja a barátom)

(2) A ellenséges B-vel, és B is ellenséges C-vel, akkor A barátságos C-vel. (ellenségem ellensége a barátom )

Valamint tudjuk, hogy az n ország között lévő összes lehetséges viszonynak éppen a fele baráti, a másik fele ellenséges. Hány ország van az S8Q-bolygón?



 

Megoldás: 64

 


QR kód

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

QR

 

 

 

Bejelentkezés cikkíróknak


Joomla template: szsnjm3-001
(c) Szoldatics József (www.szolda.hu), Eszesen KFt. 2011/2016