Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

FaceBook oldalunk

joomla facebook

Látogatók

Mai625
Heti2360
Havi12173
Összes701946

IP: 54.224.111.99 Unknown - Unknown 2018. július 18. szerda, 16:30

Ki van itt?

Guests : 35 guests online Members : No members online

Honlapok

SULINET Matematika

Oktatási Hivatal

Versenyvizsga portál
banvv

Matematika Portálok

Berzsenyi Dániel Gimnázium

berzsenyi

Óbudai Árpád Gimnázium
arpad

 

Szent István Gimnázium

sztistvan

A gondolkodás öröme
gondolkodasorome

OKTV 2010/2011 I. kategória döntő 3. feladat ( OKTV_20102011_1kdf3f )
Témakör: *Geometria

Az $ ABCD $ konvex négyszög $ AC $ és $ BD $ átlóinak metszéspontja $ P $ . Legyen az $ APB $ , illetve $ CPD $ háromszögek területe $ T_1 $ , illetve $ T_3 $ ! Az $ ABCD $ négyszög $ T $ területére teljesül, hogy $ T = ( T_1 + T_3 )^2 $ . Igazolja, hogy az $ ABCD $ négyszög trapéz!



 

Megoldás: --


QR kód

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

QR

 

 

 

Bejelentkezés cikkíróknak


Joomla template: szsnjm3-001
(c) Szoldatics József (www.szolda.hu), Eszesen KFt. 2011/2016