Legyen $ n \ge 4 $ egész szám. Bizonyítsuk be, hogy minden $ A \subseteq \left\{ 1, \ldots , n \right\} $ halmazhoz található olyan $ B \subseteq \left\{ n + 1, . . . , 2n \right\} $ halmaz, amelyre az $ A \cup B $ halmaz elemeinek szorzata négyzetszám. (Az üres halmaz elemeinek szorzata definíció szerint $ 1 $.)
 
Megoldás:
Igaz az állítás