Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

FaceBook oldalunk

Látogatók

Mai687
Heti2319
Havi45820
Összes1061243

IP: 107.23.176.162 Unknown - Unknown 2019. március 26. kedd, 12:25

Ki van itt?

Guests : 116 guests online Members : No members online

Honlapok

SULINET Matematika

Oktatási Hivatal

Versenyvizsga portál
banvv

Matematika Portálok

Berzsenyi Dániel Gimnázium

berzsenyi

Óbudai Árpád Gimnázium
arpad

 

Szent István Gimnázium

sztistvan

A gondolkodás öröme
gondolkodasorome

Keresés az Arany Dániel Matematikaverseny (AranyD) feladatbankjában

Találatok száma laponként:
Keresési szűrő: ad_20162017_k2kdf
 
Találatok száma: 3 ( listázott találatok: 1 ... 3 )

1. találat: ARANYD 2016/2017 Kezdő II. kategória döntő 1. feladat ( AD_20162017_k2kdf1f )
Témakör: *Kombinatorika (tábla)

Egy 8 × 8-as négyzetrács (tábla) 1 × 1-es négyzeteibe (mezőibe) az 1, 2, . . . , k (k 5 64) számokat írjuk valamilyen elrendezésben. Az {1, 2, . . . , k} mezőket együttesen útvonalnak nevezzük. Az útvonal teljes, ha k = 64, tehát az összes mező ki van töltve. Egy zebra lépked a tábla mezőin a következőképpen:

Tegyük fel, hogy a zebra az A mezőn áll. A fel, le, balra, jobbra irányok valamelyikében 2 mezőnyi távolságra mozdulva a táblán a zebra az A mezőből a B mezőbe érkezik, majd az első irányra merőlegesen a B-ből 3 mezőnyi távolságra elmozdulva a táblán a C mezőbe érkezik. Ekkor az A-ból C-be lépés a zebra egy szabályos lépése. Például az ábrán látható 1-es mezőből a 2-es mezőbe lépés egy szabályos zebra-lépés, a 2-es mezőből a 3-as mezőbe lépés egy újabb szabályos zebra-lépés.

Azt mondjuk, hogy az {1, 2, . . . , k} útvonal zebra-útvonal, ha a zebra az 1-es számú mezőből a 2-es számú mezőbe tud lépni szabályos zebra-lépéssel, az i-edik mezőből az i + 1-edikbe tud lépni szabályos zebra-lépéssel minden $ 1 \le i \le k-1 $ -re. Létezik-e a 8 × 8-as táblán teljes zebra-útvonal?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
2. találat: ARANYD 2016/2017 Kezdő II. kategória döntő 2. feladat ( AD_20162017_k2kdf2f )
Témakör: *Geometria (ötszög)

Legyen az ABCDE olyan konvex ötszög, melynek oldalaira teljesül, hogy AB + CD = = BC + DE, és az ötszöghöz található olyan k kör, melynek középpontja az AE oldalon van, és a kör az AB, BC, CD és DE oldalakat a P , Q, R, S pontokban érinti. Bizonyítsuk be, hogy az AE és P S egyenesek párhuzamosak.



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
3. találat: ARANYD 2016/2017 Kezdő II. kategória döntő 3. feladat ( AD_20162017_k2kdf3f )
Témakör: *Algebra (sor összege)

Legyen $ a_n=\dfrac{1}{n}+\dfrac{1}{n+1}+\dfrac{1}{n+2}+\ldots+\dfrac{1}{2017} $ , ahol $ 1\le i\le 2017,\ n\in \mathbb{N}^+ $ . Számítsuk ki az $ a_1+a_{1}^2+a_{2}^2+ a_{3}^2+ \ldots+ a_{2017}^2 + $ összeg pontos értékét.



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba

QR kód

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

QR

 

 

 

Bejelentkezés cikkíróknak


Joomla template: szsnjm3-001
(c) Szoldatics József (www.szolda.hu), Eszesen KFt. 2011/2016