Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

FaceBook oldalunk

Látogatók

Mai200
Heti1793
Havi44194
Összes951504

IP: 18.212.92.235 Unknown - Unknown 2019. január 22. kedd, 04:23

Ki van itt?

Guests : 67 guests online Members : No members online

Honlapok

SULINET Matematika

Oktatási Hivatal

Versenyvizsga portál
banvv

Matematika Portálok

Berzsenyi Dániel Gimnázium

berzsenyi

Óbudai Árpád Gimnázium
arpad

 

Szent István Gimnázium

sztistvan

A gondolkodás öröme
gondolkodasorome

Keresés az Arany Dániel Matematikaverseny (AranyD) feladatbankjában

Találatok száma laponként:
Keresési szűrő: ad_20172018_h2k2f
 
Találatok száma: 4 ( listázott találatok: 1 ... 4 )

1. találat: ARANYD 2016/2017 Haladó II. kategória 2. forduló 1. feladat ( AD_20172018_h2k2f1f )
Témakör: *Kombinatorika

Egy tanár kijavította egy 12 fős csoport dolgozatait. A kijavított dolgozatok egymás felett helyezkednek el. A tanár készül felírni a jegyeket egy papírlapra, amelyen a tanulócsoport tagjainak neve van ábécé rendben felsorolva. A lap egyik oldalán tíz név szerepel, a másik oldalon pedig kettő. A lapnak kezdetben az az oldala van felül, amelyiken tíz név szerepel. A tanár először a legfelül lévő dolgozat jegyét írja a megfelelő diák neve mellé, majd az alatta levőét és így tovább. (Természetesen az utolsó jegy beírása után már nem fordítja meg a lapot.) Döntsük el, hogy minek nagyobb az esélye: annak, hogy a tanár a lapot legalább négyszer megfordítja a jegyek beírása során, vagy annak, hogy legfeljebb háromszor?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
2. találat: ARANYD 2016/2017 Haladó II. kategória 2. forduló 2. feladat ( AD_20172018_h2k2f2f )
Témakör: *Algebra (számelmélet)

Egy osztály túrázás közben azt játszotta, hogy egyikük összeadta a természetes számokat egy általa kiválasztott n természetes számig, és megmondta az eredményt a többieknek. Az mondhatta a következő összeget, aki először eltalálta n értékét. Levente a 2273-at adta fel. Péter közbeszólt: "Biztosan hibáztál összeadás közben, mert a természetes számok összege sohasem végződhet 73-ra!" Bizonyítsuk be Péter állítását, azaz: Az első n természetes szám összege nem végződhet 73-ra!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
3. találat: ARANYD 2016/2017 Haladó II. kategória 2. forduló 3. feladat ( AD_20172018_h2k2f3f )
Témakör: *Geometria

Egy kör metszi egy adott O csúcsú $ (\alpha<180^\circ) $ szög szárait, egyiket az A és B, másikat a C és D pontban. (Az A pont O és B között, a C pont O és D között van.) Az adott szög felezője a kört az M és az N pontban metszi. (O-hoz az M van közelebb.) Bizonyítsuk be, hogy az AM ív és az ND ív összege egyenlő az MC ív és a BN ív összegével (a szóbanforgó négy ív az $ \alpha $ szárai között van)!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
4. találat: ARANYD 2016/2017 Haladó II. kategória 2. forduló 4. feladat ( AD_20172018_h2k2f4f )
Témakör: *Algebra

Adottak az alábbi egyenletek:

$ x^2+px+q=0\qquad (1) $

$ \dfrac{1}{x+2}+\dfrac{p}{x+1}+\dfrac{q}{x}=0\qquad (2) $

Bizonyítsuk be, hogy ha mindkét egyenletnek két valós gyöke van és az (1) egyenletnek pontosan egy gyöke van a ]0; 1[ intervallumban, akkor a (2) egyenletnek pontosan egy gyöke pozitív.



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba

QR kód

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

QR

 

 

 

Bejelentkezés cikkíróknak


Joomla template: szsnjm3-001
(c) Szoldatics József (www.szolda.hu), Eszesen KFt. 2011/2016