Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

FaceBook oldalunk

Látogatók

Mai268
Heti8158
Havi40777
Összes1056200

IP: 34.204.52.4 Unknown - Unknown 2019. március 23. szombat, 06:22

Ki van itt?

Guests : 109 guests online Members : No members online

Honlapok

SULINET Matematika

Oktatási Hivatal

Versenyvizsga portál
banvv

Matematika Portálok

Berzsenyi Dániel Gimnázium

berzsenyi

Óbudai Árpád Gimnázium
arpad

 

Szent István Gimnázium

sztistvan

A gondolkodás öröme
gondolkodasorome

Keresés az Matematika érettségi (Érettségi) feladatbankjában

Találatok száma laponként:
Keresési szűrő: mmk_201110_2r
 
Találatok száma: 6 ( listázott találatok: 1 ... 6 )

1. találat: Matematika középszintű érettségi, 2011. október, II. rész, 13. feladat ( mmk_201110_2r13f )
Témakör: *Algebra (gyökös egyenlet, trigonometrikus egyenlet, trigonometria)

Oldja meg a valós számok halmazán az alábbi egyenleteket!

a) $ 5-x=\sqrt{2x^2-71} $

b) $ \sin^2 x = 1+2 \cos x $



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
2. találat: Matematika középszintű érettségi, 2011. október, II. rész, 14. feladat ( mmk_201110_2r14f )
Témakör: *Statisztika (grafikon, valószínűségszámítás)

Egy felmérés során két korcsoportban összesen 200 embert kérdeztek meg arról, hogy évente hány alkalommal járnak színházba. Közülük 120-an 40 évesnél fiatalabbak, 80 válaszadó pedig 40 éves vagy annál idősebb volt. Az eredményeket (százalékos megoszlásban) az alábbi diagram szemlélteti.

 

 

 

 

a) Hány legalább 40 éves ember adta azt a választ, hogy 5-nél kevesebbszer volt színházban?

b) A megkérdezettek hány százaléka jár évente legalább 5, de legfeljebb 10 alkalommal színházba?

c) A 200 ember közül véletlenszerűen kiválasztunk kettőt. Mekkora a valószínűsége annak, hogy közülük legfeljebb az egyik fiatalabb 40 évesnél? Válaszát három tizedesjegyre kerekítve adja meg!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
3. találat: Matematika középszintű érettségi, 2011. október, II. rész, 15. feladat ( mmk_201110_2r15f )
Témakör: *Koordinátageometria (skalárszorzat, meredekség, hajlásszög)

Adott két egyenes: $ e: 5x-2y=-14,5 $ ;  $ f: 2x+5y=14,5 $ . 

a) Határozza meg a két egyenes P metszéspontjának koordinátáit!

b) Igazolja, hogy az e és az f egyenesek egymásra merőlegesek!

c) Számítsa ki az e egyenes x tengellyel bezárt szögét!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
4. találat: Matematika középszintű érettségi, 2011. október, II. rész, 16. feladat ( mmk_201110_2r16f )
Témakör: *Algebra (geometria, logaritmus)

Újsághír: „Szeizmológusok számításai alapján a 2004. december 26-án Szumátra szigetének közelében kipattant földrengés a Richter-skála szerint 9,3-es erősségű volt; a rengést követő cunami (szökőár) halálos áldozatainak száma megközelítette a 300 ezret.”

A földrengés Richter-skála szerinti „erőssége” és a rengés középpontjában felszabaduló energia között fennálló összefüggés: $ M=-4,42 + \dfrac{2}{3} \lg E $ .

Ebben a képletben E a földrengés középpontjában felszabaduló energia mérőszáma (joule-ban mérve), M pedig a földrengés erősségét megadó nem negatív szám a Richter- skálán.

a) A Nagasakira 1945-ben ledobott atombomba felrobbanásakor felszabaduló energia $ 1,344 \cdot 10^{14} $ joule volt. A Richter-skála szerint mekkora erősségű az a földrengés, amelynek középpontjában ekkora energia szabadul fel?

b) A 2004. december 26-i szumátrai földrengésben mekkora volt a felszabadult energia?

c) A 2007-es chilei nagy földrengés erőssége a Richter-skála szerint 2-vel nagyobb volt, mint annak a kanadai földrengésnek az erőssége, amely ugyanebben az évben következett be. Hányszor akkora energia szabadult fel a chilei földrengésben, mint a kanadaiban?

d) Az óceánban fekvő egyik szigeten a földrengést követően kialakuló szökőár egy körszelet alakú részt tarolt le. A körszeletet határoló körív középpontja a rengés középpontja, sugara pedig 18 km. A rengés középpontja a sziget partjától 17 km távolságban volt (lásd a felülnézeti ábrán). Mekkora a szárazföldön elpusztult rész területe egész négyzetkilométerre kerekítve?

 

 

 

 

 

 

 



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
5. találat: Matematika középszintű érettségi, 2011. október, II. rész, 17. feladat ( mmk_201110_2r17f )
Témakör: *Kombinatorika (számelmélet, oszthatóság)

a) Hány olyan négy különböző számjegyből álló négyjegyű számot tudunk készíteni, amelynek mindegyik számjegye eleme az $ \{ $ 1; 2; 3; 4; 5; 6; 7 $ \} $ halmaznak?

b) Hány 4-gyel osztható hétjegyű szám alkotható az 1, 2, 3, 4, 5 számjegyekből?

c) Hány olyan hatjegyű, hárommal osztható szám írható fel, amely csak az 1, 2, 3, 4, 5 számjegyeket tartalmazza, és e számjegyek mindegyike legalább egyszer előfordul benne?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
6. találat: Matematika középszintű érettségi, 2011. október, II. rész, 18. feladat ( mmk_201110_2r18f )
Témakör: *Térgeometria (valószínűség, hasonlóság, binomiális eloszlás)

Egy csonkakúp alakú tejfölös doboz méretei a következők: az alaplap átmérője 6 cm, a fedőlap átmérője 11 cm és az alkotója 8,5 cm.

a) Hány $ cm^3 $ tejföl kerül a dobozba, ha a gyárban a kisebbik körlapján álló dobozt magasságának 86%-áig töltik meg? Válaszát tíz $ cm^3 $ -re kerekítve adja meg!

b) A gyártás során a dobozok 3%-a megsérül, selejtes lesz. Az ellenőr a gyártott dobozok közül visszatevéssel 10 dobozt kiválaszt. Mennyi a valószínűsége annak, hogy a 10 doboz között lesz legalább egy selejtes? Válaszát két tizedesjegyre kerekítve adja meg!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba

QR kód

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

QR

 

 

 

Bejelentkezés cikkíróknak


Joomla template: szsnjm3-001
(c) Szoldatics József (www.szolda.hu), Eszesen KFt. 2011/2016