Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

FaceBook oldalunk

Látogatók

Mai511
Heti5221
Havi40695
Összes1169755

IP: 54.226.4.91 Unknown - Unknown 2019. máj. 23. csütörtök, 06:02

Ki van itt?

Guests : 103 guests online Members : No members online

Honlapok

SULINET Matematika

Oktatási Hivatal

Versenyvizsga portál
banvv

Matematika Portálok

Berzsenyi Dániel Gimnázium

berzsenyi

Óbudai Árpád Gimnázium
arpad

 

Szent István Gimnázium

sztistvan

A gondolkodás öröme
gondolkodasorome

Keresés az Matematika érettségi (Érettségi) feladatbankjában

Találatok száma laponként:
Keresési szűrő: mmk_201510_2r
 
Találatok száma: 6 ( listázott találatok: 1 ... 6 )

1. találat: Matematika középszintű érettségi, 2015. október, II. rész, 13. feladat ( mmk_201510_2r13f )
Témakör: *Sorozatok (statisztika, kvóciens, quotiens)

Egy számtani sorozat három egymást követő tagja ebben a sorrendben 32; a és 18.

a) Határozza meg az a értékét és a sorozat differenciáját!

Egy mértani sorozat három egymást követő tagja ebben a sorrendben 32; b és 18.

b) Határozza meg a b értékét és a sorozat hányadosát!

A 32; c és 18 számokról tudjuk, hogy a három szám átlaga kettővel kisebb, mint a mediánja, továbbá 32 > c > 18.

c) Határozza meg a c értékét!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
2. találat: Matematika középszintű érettségi, 2015. október, II. rész, 14. feladat ( mmk_201510_2r14f )
Témakör: *Algebra (függvények, kombinatorika)

Egy öttusaversenyen 31 résztvevő indult. A vívás az első szám, ahol mindenki mindenkivel egyszer mérkőzik meg. Aki 21 győzelmet arat, az 250 pontot kap. Aki ennél több győzelmet arat, az minden egyes további győzelemért 7 pontot kap a 250 ponton felül. Aki ennél kevesebbszer győz, attól annyiszor vonnak le 7 pontot a 250-ből, ahány győzelem hiányzik a 21-hez. (A mérkőzések nem végződhetnek döntetlenre.)

a) Hány pontot kapott a vívás során Péter, akinek 5 veresége volt?

b) Hány győzelme volt Bencének, aki 215 pontot szerzett?

Az öttusa úszás számában 200 métert kell úszni. Az elért időeredményekért járó pontszámot mutatja a grafikon.

 

c) Jelölje meg az alábbi két kérdés esetén a helyes választ!

Hány pontot kapott Robi, akinek az időeredménye 2 perc 6,28 másodperc?

A: 320 B: 321 C: 322 D: 323

Péter 317 pontot kapott. Az alábbiak közül válassza ki Péter időeredményét!

A: 2 perc 7,00 mp B: 2 perc 7,60 mp C: 2 perc 7,80 mp D: 2 perc 8,00 mp

Az öttusa lovaglás számában egy akadálypályán tizenkét különböző akadályt kell a versenyzőnek átugratnia. Egy akadály a nehézsége alapján három csoportba sorolható: A, B vagy C típusú. Ádám a verseny előtti bemelegítéskor először az öt darab A, majd a négy darab B, végül a három darab C típusú akadályon ugrat át, mindegyiken pontosan egyszer. Bemelegítéskor az egyes akadálytípusokon belül a sorrend szabadon megválasztható.

d) Számítsa ki, hogy a bemelegítés során hányféle sorrendben ugrathatja át Ádám a tizenkét akadályt!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
3. találat: Matematika középszintű érettségi, 2015. október, II. rész, 15. feladat ( mmk_201510_2r15f )
Témakör: *Geometria (Piragorasz-tétel)

Az ABC derékszögű háromszög AC befogója 6 cm, BC befogója 8 cm hosszú.

a) Számítsa ki az ABC háromszög hegyesszögeinek nagyságát!

A DEF derékszögű háromszög DE befogója 7 cm-rel rövidebb, mint a DF befogó. Az átfogó 2 cm-rel hosszabb, mint a DF befogó.

b) Számítsa ki a DEF háromszög oldalainak hosszát!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
4. találat: Matematika középszintű érettségi, 2015. október, II. rész, 16. feladat ( mmk_201510_2r16f )
Témakör: *Koordinátageometria (koszinusz tétel, szabályos háromszög)

Az $ \overrightarrow{AB} $ és $ \overrightarrow{AC} $ vektorok 120°-os szöget zárnak be egymással, és mindkét vektor hossza 5 egység.

a) Számítsa ki az $ \overrightarrow{AB}+\overrightarrow{AC} $ vektor hosszát!

b) Számítsa ki az $ \overrightarrow{AB}-\overrightarrow{AC} $ vektor hosszát!

A PRST rombusz középpontja a K (4; –3) pont, egyik csúcspontja a T (7; 1) pont. Tudjuk, hogy az RT átló hossza fele a PS átló hosszának.

c) Adja meg a P, az R és az S csúcsok koordinátáit!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
5. találat: Matematika középszintű érettségi, 2015. október, II. rész, 17. feladat ( mmk_201510_2r17f )
Témakör: *Kombinatorika (analízis, algebra, exponenciális, egyenlőtlenség, egyenlet, logaritmus, logika)

Egy 2014 végén készült előrejelzés szerint az Indiában élő tigrisek t száma az elkövetkező években (az egyes évek végén) megközelítőleg a következő összefüggés szerint alakul: $ t(x)=3600 \cdot 0,854^x $ , ahol x a 2014 óta eltelt évek számát jelöli.

a) Számítsa ki, hogy az előrejelzés alapján 2016 végére hány százalékkal csökken a tigrisek száma a 2014-es év végi adathoz képest!

b) Melyik évben várható, hogy a tigrisek száma 900 alá csökken?

Egy állatkert a tigrisek fennmaradása érdekében tenyésztő programba kezd. Beszereznek 4 hím és 5 nőstény kölyöktigrist, melyeket egy kisebb és egy nagyobb kifutóban kívánnak elhelyezni a következő szabályok mindegyikének betartásával:

(I) háromnál kevesebb tigris egyik kifutóban sem lehet;

(II) a nagyobb kifutóba több tigris kerül, mint a kisebbikbe;

(III) mindkét kifutóban hím és nőstény tigrist is el kell helyezni;

(IV) egyik kifutóban sem lehet több hím, mint nőstény tigris.

c) Hányféleképpen helyezhetik el a 9 tigrist a két kifutóban? (A tigriseket megkülönböztetjük egymástól, és két elhelyezést eltérőnek tekintünk, ha van olyan tigris, amelyik az egyik elhelyezésben más kifutóban van, mint a másik elhelyezésben.)



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
6. találat: Matematika középszintű érettségi, 2015. október, II. rész, 18. feladat ( mmk_201510_2r18f )
Témakör: *Térgeometria (valószínűségszámítás, szabályos háromszög, Pitagorasz-tétel, binomiális eloszlás, visszatevéses mintavétel )

Egy műanyag termékeket gyártó üzemben szabályos hatoldalú csonkagúla alakú, felül nyitott virágtartó dobozokat készítenek egy kertészet számára (lásd az ábrát).

 

 

A csonkagúla alaplapja 13 cm oldalú szabályos hatszög, fedőlapja 7 cm oldalú szabályos hatszög, az oldalélei 8 cm hosszúak.

a) Egy műanyagöntő gép 1 kg alapanyagból (a virágtartó doboz falának megfelelő anyagvastagság mellett) 0,93 m2 felületet képes készíteni. Számítsa ki, hány virágtartó doboz készíthető 1 kg alapanyagból!

A kertészetben a sok virághagymának csak egy része hajt ki: 0,91 annak a valószínűsége, hogy egy elültetett virághagyma kihajt.

b) Számítsa ki annak a valószínűségét, hogy 10 darab elültetett virághagyma közül legalább 8 kihajt! Válaszát három tizedesjegyre kerekítve adja meg!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba

QR kód

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

QR

 

 

 

Bejelentkezés cikkíróknak


Joomla template: szsnjm3-001
(c) Szoldatics József (www.szolda.hu), Eszesen KFt. 2011/2016