Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

FaceBook oldalunk

Látogatók

Mai1327
Heti3826
Havi19395
Összes3871605

IP: 44.210.21.70 Unknown - Unknown 2022. augusztus 10. szerda, 14:43

Ki van itt?

Guests : 102 guests online Members : No members online

Honlapok

SULINET Matematika

Oktatási Hivatal

Versenyvizsga portál
banvv

Matematika Portálok

Berzsenyi Dániel Gimnázium

berzsenyi

Óbudai Árpád Gimnázium
arpad

 

Szent István Gimnázium

sztistvan

A gondolkodás öröme
gondolkodasorome

fb keresés

Matematika érettségi (Érettségi)

Találatok száma laponként:
Keresési szűrő: mmk_201805_2r
 
Találatok száma: 6 (listázott találatok: 1 ... 6)

1. találat: Matematika középszintű érettségi, 2018. május II. rész, 13. feladat
Témakör: *Algebra   (Azonosító: mmk_201805_2r13f )

a) Péter és Pál szendvicset és ásványvizet vásárolt a büfében. Péter két szendvicset és két ásványvizet vett 740 Ft-ért, Pál pedig három szendvicset és egy ásványvizet 890 Ft-ért. Mennyibe kerül egy szendvics, és mennyibe kerül egy ásványvíz?

b) Oldja meg az alábbi egyenletet a valós számok halmazán!

$ 1-x=\sqrt{x+5} $

 



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
2. találat: Matematika középszintű érettségi, 2018. május II. rész, 14. feladat
Témakör: *Geometria   (Azonosító: mmk_201805_2r14f )

Az $ ABCD $derékszögű trapézban az $ A $ és a $ D $ csúcsnál van derékszög. Az $ AB $ alap 11 cm, a $ BC $ szár 12 cm, a $ CD $ alap 5 cm hosszú.

 

 

a) Igazolja, hogy a trapéz $ B $ csúcsánál lévő szög nagysága $ 60^\circ $, és számítsa ki a trapéz területét!

b) Számítsa ki az $ ABC $ háromszög $ C $ csúcsánál lévő szögét!

xxxképxxx

 



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
3. találat: Matematika középszintű érettségi, 2018. május II. rész, 15. feladat
Témakör: *Algebra   (Azonosító: mmk_201805_2r15f )

a) Egy számtani sorozat negyedik tagja 4, tizenhatodik tagja –2. Számítsa ki a sorozat első 120 tagjának az összegét!

b) Adott egy szakasz két végpontja: $ A(0; 4) $ és $ B(2; 3) $. Írja fel az $ AB $ szakasz felezőmerőlegesének egyenletét!

c) Egy elsőfokú függvény a 0-hoz 4-et, a 2-höz 3-at rendel. Írja fel a függvény hozzárendelési szabályát!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
4. találat: Matematika középszintű érettségi, 2018. május II. rész, 16. feladat
Témakör: *Kombinatorika   (Azonosító: mmk_201805_2r16f )

Anna dominókészletében a dominókövek egyik oldala egy vonallal két részre van osztva. Az egyes részeken a pöttyök száma 0, 1, 2, 3, 4, 5 vagy 6 lehet. A készletben minden lehetséges pöttyözésű dominóból pontosan egy darab van. Az ábrán a 2-6-os (6-2-es) dominó látható.

 

 

a) Hány olyan dominó van a készletben, amelyen a két részen lévő pöttyök számának szorzata prímszám?

A játékban két dominó akkor csatlakozhat egymáshoz, ha a két érintkező részen ugyanannyi pötty van. (Lásd az ábrát.)

 

 

Anna egy lapra elhelyezte dominókészletének azt a hat dominóját, amelyek mindkét részén van legalább 1, de legfeljebb 3 pötty. Ezután összekötötte azokat a dominókat, amelyeket a játékban csatlakoztatni lehetne egymáshoz. Az alábbi ábra a hat dominót és az összekötő vonalakat mutatja, de csak két részen adtuk meg a pöttyöket.

 

 

b) Rajzolja be a tíz üres részre a hiányzó pöttyöket az összekötésnek megfelelően! Anna a teljes 28 darabos készletből kihúzta a 2-6-os dominót. Ezután véletlenszerűen kihúz még egy dominót.

c) Számítsa ki annak a valószínűségét, hogy a másodiknak kihúzott dominót csatlakoztatni tudja az elsőhöz!

 

 

Egy játékbemutatóra Anna és Balázs 1800 dominót szeretne felállítani a földre úgy, hogy a legelsőt meglökve az összes dominó sorban eldőljön. Anna egyedül 6 óra alatt, Balázs pedig 9 óra alatt építené meg a dominóláncot.

d) Ha Anna és Balázs – tartva a saját tempójukat – együtt dolgozna, akkor hány óra alatt végeznének az 1800 dominó felállításával?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
5. találat: Matematika középszintű érettségi, 2018. május II. rész, 17. feladat
Témakör: *Geometria   (Azonosító: mmk_201805_2r17f )

Egy jégkrémgyártó üzem fagylalttölcséreket rendel. A csonkakúp alakú fagylalttölcsér belső méretei: felső átmérő 7 cm, alsó átmérő 4 cm, magasság 8 cm.

 

 

a) Számítsa ki, hogy a tölcsérbe legfeljebb hány cm3 jégkrém fér el, ha a jégkrém – a csomagolás miatt – csak a felső perem síkjáig érhet!

Ennek a tölcsérnek létezik olyan változata is, amelynek a belső felületét vékony csokoládéréteggel vonják be. 1 kg csokoládé kb. $ 0,7 m^2 $ felület bevonásához elegendő.

b) Számítsa ki, hogy hány kilogramm csokoládéra van szükség 1000 darab tölcsér belső felületének bevonásához! Válaszát egész kilogrammra kerekítve adja meg!

Egy fagylaltozóban hatféle ízű fagylalt kapható: vanília, csokoládé, puncs, eper, málna és dió. Andrea olyan háromgombócos fagylaltot szeretne venni tölcsérbe, amely kétféle ízű fagylaltból áll.

c) Hányféle különböző háromgombócos fagylaltot kérhet, ha számít a gombócok sorrendje is? (Például a dió-dió-vanília más kérésnek számít, mint a dió-vanília-dió.)



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
6. találat: Matematika középszintű érettségi, 2018. május II. rész, 18. feladat
Témakör: *Kombinatorika   (Azonosító: mmk_201805_2r18f )

Egy 30 fős osztályban felmérést készítettek a diákok internetezési szokásairól. Az egyik kérdés az volt, hogy naponta átlagosan ki hány órát használja az internetet a szabadidejében. A válaszok alapján az itt látható kördiagram készült.

a) Hány olyan diák van az osztályban, aki naponta legalább 2 órát használja az internetet a szabadidejében?

Egy másik kérdés az volt, hogy a mobiltelefon, a laptop, illetve a táblagép (tablet) közül melyiket használják internetezésre. A mobiltelefont mind a 30-an, a laptopot 24-en, a táblagépet 16-an jelölték meg. A felmérésből az is kiderült, hogy a mobiltelefon, a laptop és a táblagép közül pontosan kétféle eszközt 14 diák használ.

b) Hányan használják mind a háromféle eszközt internetezésre?

A vezeték nélküli hálózati kapcsolatot létrehozó egységek (wifi routerek) $ 3\% $-a 2 éven belül meghibásodik (ezt úgy tekinthetjük, hogy 0,03 annak a valószínűsége, hogy egy készülék meghibásodik 2 év alatt). A meghibásodott eszközt garanciálisan kicserélik. Az iskola 20 ilyen eszközt vásárolt.

c) Mennyi a valószínűsége annak, hogy 2 év alatt legfeljebb egy hibásodik meg a vásárolt eszközök közül?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

HivatalosHonlap Matkonyv InformatikaPortal KemiaPortal  
FizikaPortal KulturtortenetiEnciklopedia AlsosPortal TortenelemFilozofia
BiologiaPortal BiologiaPortal MagyarPortal MagyarPortal
  BiologiaPortal MagyarPortal  

QR kód

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

QR

 

 

 

Bejelentkezés cikkíróknak