Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

FaceBook oldalunk

joomla facebook

Látogatók

Mai720
Heti3441
Havi21198
Összes763788

IP: 54.80.219.236 Unknown - Unknown 2018. szeptember 19. szerda, 13:50

Ki van itt?

Guests : 104 guests online Members : No members online

Honlapok

SULINET Matematika

Oktatási Hivatal

Versenyvizsga portál
banvv

Matematika Portálok

Berzsenyi Dániel Gimnázium

berzsenyi

Óbudai Árpád Gimnázium
arpad

 

Szent István Gimnázium

sztistvan

A gondolkodás öröme
gondolkodasorome

OKTV 2010/2011 I. kategória II. forduló 4. feladat ( OKTV_20102011_1k2f4f )
Témakör: *Geometria

Adottak a $ k_1 $ ; $ k_2 $ ; $ k_3 $ egymást páronként kívülről érintő körök. Az érintési pontjaik legyenek: $ P = k_1 \cap k_3 $ , $ Q = k_1 \cap k_2 $ és $ R = k_2 \cap k_3 $ . A $ PQ $ egyenes $ k_2 $ körrel való másik metszéspontja $ A $ és $ k_3 $ -mal $ C $ . Az $ AR $ egyenes a $ k_3 $ kört $ B $ -ben is metszi. Bizonyítsa be, hogy az $ ABC $ háromszög derékszögű!



 

Megoldás: --


QR kód

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

QR

 

 

 

Bejelentkezés cikkíróknak


Joomla template: szsnjm3-001
(c) Szoldatics József (www.szolda.hu), Eszesen KFt. 2011/2016