Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

FaceBook oldalunk

Látogatók

Mai513
Heti5223
Havi40697
Összes1169757

IP: 54.226.4.91 Unknown - Unknown 2019. máj. 23. csütörtök, 06:03

Ki van itt?

Guests : 108 guests online Members : No members online

Honlapok

SULINET Matematika

Oktatási Hivatal

Versenyvizsga portál
banvv

Matematika Portálok

Berzsenyi Dániel Gimnázium

berzsenyi

Óbudai Árpád Gimnázium
arpad

 

Szent István Gimnázium

sztistvan

A gondolkodás öröme
gondolkodasorome

Keresés az Matematika érettségi (Érettségi) feladatbankjában

Találatok száma laponként:
Keresési szűrő: mme_201005_2r
 
Találatok száma: 5 ( listázott találatok: 1 ... 5 )

1. találat: Matematika emelt szintű érettségi, 2010. május, II. rész, 5. feladat ( mme_201005_2r05f )
Témakör: *Algebra

Egy áruházban egy mosóport négyféle kiszerelésben árusítanak. Az első kiszerelés $ 50\% $ -kal drágább a harmadiknál, és $ 20\% $ -kal kevesebb mosópor van benne, mint a másodikban. A második $ 50\% $ -kal több mosóport tartalmaz, mint a harmadik, és $ 25\% $ -kal többe kerül, mint az első.

a) Az első három kiszerelés közül melyikben a legalacsonyabb a mosópor egységára?

A negyedik fajta kiszerelést úgy állították össze, hogy annak dobozán a feltüntetett egységár megegyezett az első három kiszerelés átlagos egységárával.

b) Ha a legolcsóbb kiszerelésű dobozon 600 Ft egységárat tüntettek fel, akkor hány forint egységár szerepel a negyedik fajta dobozon?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
2. találat: Matematika emelt szintű érettségi, 2010. május, II. rész, 6. feladat ( mme_201005_2r06f )
Témakör: *Algebra

Legyen $ f(x)=-\dfrac{4x^3} a+\dfrac{3x^2} a+\dfrac{2x} a-a $ , ahol $ a $ pozitív valós szám és $ x \in \mathbb{R} $ .

a) Igazolja, hogy $ \int\limits_{0}^{a} f(x)\ dx= = - a^3 + a $ .

b) Mely pozitív valós $ a $ számokra teljesül, hogy  $ \int\limits_{0}^{a} f(x)\ dx\ge0 $

c) Az $ x $ mely pozitív valós értéke esetén lesz a $ g(x) = -x^3 + x $ függvénynek lokális (helyi) maximuma?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
3. találat: Matematika emelt szintű érettségi, 2010. május, II. rész, 7. feladat ( mme_201005_2r07f )
Témakör: *Geometria

Az $ ABCD $ konvex négyszög oldalegyeneseinek egyenlete rendre:

$ DA: 3x − 4y − 20 = 0 $ , $ AB: 3x + 5y − 20 = 0 $ , $ BC: 4x − 3y +12 = 0 $ , $ CD: 5x + 3y +15 = 0 $ .

a) Igazolja, hogy a négyszög átlói az $ x $ és az $ y $ tengelyre illeszkednek, továbbá hogy ennek a négyszögnek nincsen derékszöge!

b) Bizonyítsa be, hogy ez a négyszög húrnégyszög!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
4. találat: Matematika emelt szintű érettségi, 2010. május, II. rész, 8. feladat ( mme_201005_2r08f )
Témakör: *Kombinatorika

a) Peti levelet írt négy barátjának, Andrásnak, Bélának, Csabának és Daninak, és mindenkinek 1-1 fényképet is akart küldeni a nyaralásról. A négy fénykép különböző volt, és Peti mindegyikük hátlapjára ráírta, kinek szánja. A fényképeket végül figyelmetlenül rakta borítékba, bár mindenki kapott a levelében egy fényképet is.

a1) Hányféleképpen fordulhat elő, hogy csak Andris kapja azt a fényképet, amelyen a saját neve szerepel?

a2) Melyik esemény bekövetkezésének nagyobb a valószínűsége:

- senki sem kapja azt a fényképet, amelyet Peti neki szánt;

vagy

- pontosan egyikük kap olyan fényképet, amelyen a saját neve szerepel?

b) Egy szabályos érme egyik oldalán a 6-os, a másikon pedig a 4-es számjegy látható. Az érmét négyszer egymás után feldobjuk, és a dobott számokat összeadjuk. Milyen értékeket kaphatunk összeg gyanánt? Az egyes összegek dobásának mekkora a valószínűsége?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
5. találat: Matematika emelt szintű érettségi, 2010. május, II. rész, 9. feladat ( mme_201005_2r09f )
Témakör: *Algebra

Egy $ 90\ m^2 $ területű, trapéz alakú virágágyás párhuzamos oldalainak aránya $ AB : DC = 3: 2 $ . Az ágyást tavasszal és ősszel is az évszaknak megfelelő virágokkal ültetik be. Mindkét alkalommal mindegyik fajta virágból átlagosan 50 virágtövet ültetnek négyzetméterenként. Tavasszal az átlókkal kijelölt négy háromszögre bontották a virágágyást. Az $ ABM $ háromszögbe sárga virágokat, a $ DMC $ háromszögbe fehéret, a maradék két részbe piros virágokat ültettek.

a) A tavaszi parkosításkor hány darab fehér, hány piros és hány sárga virágot ültettek be?

Ősszel a másik ábra alapján tervezték meg a virágok elhelyezését. (Az E, F, G és H pontok a trapéz oldalainak felezőpontjai.) Ekkor is fehér (f), piros (p) és sárga (s) virágokat ültettek a tervrajz alapján.

b) Az őszi parkosításkor hány darab fehér, hány piros és hány sárga virágot ültettek? Válaszait az alábbi táblázatban tüntesse fel!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba

QR kód

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

QR

 

 

 

Bejelentkezés cikkíróknak


Joomla template: szsnjm3-001
(c) Szoldatics József (www.szolda.hu), Eszesen KFt. 2011/2016