Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

FaceBook oldalunk

Látogatók

Mai488
Heti2045
Havi34664
Összes1050087

IP: 18.208.211.150 Unknown - Unknown 2019. március 19. kedd, 09:54

Ki van itt?

Guests : 48 guests online Members : No members online

Honlapok

SULINET Matematika

Oktatási Hivatal

Versenyvizsga portál
banvv

Matematika Portálok

Berzsenyi Dániel Gimnázium

berzsenyi

Óbudai Árpád Gimnázium
arpad

 

Szent István Gimnázium

sztistvan

A gondolkodás öröme
gondolkodasorome

Keresés az Matematika érettségi (Érettségi) feladatbankjában

Találatok száma laponként:
Keresési szűrő: mme_201210_1r
 
Találatok száma: 4 ( listázott találatok: 1 ... 4 )

1. találat: Matematika emelt szintű érettségi, 2012. október, I. rész, 1. feladat ( mme_201210_1r01f )
Témakör: *Kombinatorika

Egy új típusú sorsjegyből 5 millió darab készült, egy sorsjegy ára 200 Ft. Minden egyes sorsjegyen vagy a "Nyert" vagy a "Nem nyert" felirat található, és a nyertes sorsjegyen feltüntetik a nyertes szelvény tulajdonosa által felvehető összeget is. A gyártás során a mellékelt táblázat szerinti eloszlásban készült el az 5 millió sorsjegy.

 

 

 

 

a) Ha minden sorsjegyet eladnának és a nyertesek minden nyereményt felvennének, akkor mekkora lenne a sorsjegyek eladásából származó bevétel és a kifizetett nyeremény különbözete?

b) Aki a kibocsátás után az első sorsjegyet megveszi, mekkora valószínűséggel nyer a sorsjegy áránál többet?

c) Számítsa ki, hogy ebben a szerencsejátékban az első sorsjegyet megvásárló személy nyereségének mennyi a várható értéke! (A nyereség várható értékének kiszámításához nemcsak a megnyerhető összeget, hanem a sorsjegy árát is figye- lembe kell venni.)



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
2. találat: Matematika emelt szintű érettségi, 2012. október, I. rész, 2. feladat ( mme_201210_1r02f )
Témakör: *Algebra

Két valós szám összege 29. Ha az egyikből elveszünk 15-öt, a másikhoz pedig hozzáadunk 15-öt, az így kapott két szám szorzata éppen ötszöröse lesz az eredeti két szám szorzatának. Melyik lehet ez a két szám?



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
3. találat: Matematika emelt szintű érettségi, 2012. október, I. rész, 3. feladat ( mme_201210_1r03f )
Témakör: *Algebra

Az alábbi három kifejezés mindegyike esetén adja meg a valós számok halmazának azt a legbővebb részhalmazát, amelyen a kifejezés értelmezhető!

a) $ \cos \left(\log_2\sqrt{x }\right) $

b) $ \sqrt{\log_2 \left(\cos x\right) } $

c) $ \log_{\sqrt{x }}\left(\cos^2 x\right) $



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba
4. találat: Matematika emelt szintű érettségi, 2012. október, I. rész, 4. feladat ( mme_201210_1r04f )
Témakör: *Geometria

A Csendes-óceán egyik kis szigetétől keletre, a szigettől 16 km távolságban elsüllyedt egy föld körüli úton járó vitorlás. A legénység egy mentőcsónakban segítségre vár, a náluk lévő jeladó készülék hatósugara mindössze 6 km. Amikor a vitorlás elsüllyedt, akkor a szigettől délre, a szigettől 24 km távolságra volt egy tengerjáró hajó. Ez a hajó állandóan északkeleti irányba halad, a hajótöröttek pedig a vitorlás elsüllyedésének helyéről folyamatosan küldik a vészjeleket.

a) Igazolja, hogy a tengerjáró legénysége észlelheti a segélykérő jelzést!

Egy 1,5 km magasságban haladó repülőgép éppen a sziget felett van, amikor a repülőgép fedélzeti műszerei észlelik a tengerjáró hajót, amely a vitorlás elsüllyedése óta 20 km-t tett meg.

b) Mekkora depresszió szög (lehajlási szög) alatt észlelik a műszerek a tengerjárót? Válaszát fokban, egészre kerekítve adja meg!

Számításai során a Föld görbületétől tekintsen el!



Megtekintés helyben:     Megtekintés új oldalon:          Feladatlapba

QR kód

Budapesti Fazekas Mihály Gyakorló Általános Iskola és Gimnázium

QR

 

 

 

Bejelentkezés cikkíróknak


Joomla template: szsnjm3-001
(c) Szoldatics József (www.szolda.hu), Eszesen KFt. 2011/2016