Tekintsük azokat a konvex négyszögeket, amelyek 100 darab egységnyi oldalú szabályos háromszögre darabolhatók. Mekkorák lehetnek a megfelelő négyszögek oldalai?
Egy 30 fős osztályban a karácsonyi ajándékozásról sorshúzással döntenek. Minden diák nevét felírják egy papírra, majd a 30 papírdarabot egy sapkába teszik. Névsor szerinti sorrendben mindenki kihúz egy papírt a sapkából és a rajta szereplő embernek készít ajándékot. Elképzelhető, hogy valaki saját magát ajándékozza meg.
Az átadás úgy történik, hogy először jelentkeznek, akik magukat húzták, majd a többi diák közül a legfiatalabb diák átadja ajándékát az általa húzott embernek, és innentől aki éppen megkapja az ajándékát, az lesz a soron következő ajándékot átadó ember. Ha valahol elakad a sor, azaz olyan diák kapja az ajándékot, aki már a sajátját átadta, de még nem mindenki adta át illetve kapta meg az ajándékát, akkor ez utóbbiak közül a legfiatalabb újra kezdi.
Mennyi a valószínűsége, hogy egy osztályban hat egymást követő év karácsonyi ajándékozása során lesz legalább egy olyan év, amelyben senki nem húzza magát és a sor sem akad el? (Az osztály létszáma minden évben ugyanannyi.)
Melyek azok az $ x $, $ y $, $ z $ és $ w $ valós számok, amelyekre egyszerre teljesül:
$ x+y+z=\dfrac{3}{2}$
és
$ \sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\ge 2+3^{w-2} $
Adott egy egységnyi oldalú négyzet. Határozzuk meg a négyzet síkjában levő azon körök középpontjainak a halmazát (mértani helyét), amelyeknek a négyzet mind a négy oldalával két közös pontja van.