Bizonyítsuk be, hogy az
$x^2+y^2+z^2=(x-y)(y-z)(z-x) $
egyenletnek végtelen sok megoldása van az egész számok körében.
$ $Az $ 1, 2, ..., n $ számok közül kiválasztható-e úgy egy $ k $ szám, hogy az alábbi $ M $ kifejezés értéke négyzetszám legyen, ha
a) $ n = 2019 $;
b) $ n = 2020 $?
$M=\dfrac{1!\cdot 2!\cdot 3!\cdot \ldots \cdot n!}{k!} $
Az ABC háromszög A-ból induló szögfelezője a BC oldalt D-ben metszi. Az ABD háromszög beírt köre az AB oldalt E-ben, az ADC háromszög beírt köre az AC oldalt H-ban érinti. Igazoljuk, hogy az EH egyenes az említett két körből egyenlő hosszúságú húrokat metsz ki.
a) Hány részhalmaza van a $ H = \left\{ 1; 2; 3; \ldots 10 \right\} $ halmaznak, amelyben az elemek szorzata osztható 30-cal?
b) Hány olyan $ S $ részhalmaza van $ H $-nak, amelyre $ S $ minden elemének valamely szomszédja is $ S $-beli (azaz ha $ x \in S $, akkor van olyan $ y \in S $, amelyre $ \left| x-y \right| = 1) $?
Megjegyzés: A feladat a) részénél az elemek szorzatát az üres halmaz esetén tekintsük 0-nak, az egy elemű $ \left\{ x \right\} $ részhalmaz esetén pedig $ x $-nek. A feladat b) részénél a megfelelő részhalmazok között meg kell számolnunk az üres halmazt és magát a H halmazt is.